Skip to main content
3.139.236.93

Help: Wiki Math

Parsing error resulted in empty content. Displaying raw markup below.

The Wiki supports !LaTeX markup:

<math>pi=\frac{3}{4} \sqrt{3}+24 \int_0^{1/4}{\sqrt{x-x^2}dx}</math>

Mathematical Formula (!LaTeX) can be inserted into text like this:
{{{
<math>Insert formula here</math>
}}}

For example:
{{{<math>\alpha^2+\beta^2=1</math>}}}

...displays <math>\alpha^2+\beta^2=1</math>

== Displaying a Formula ==

The Wiki uses a subset of !TeX markup, including some extensions from !LaTeX and !AMSLaTeX, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on the complexity of the expression. While it can generate !MathML, it is not currently used due to limited browser support. As browsers become more advanced and support for !MathML becomes more wide-spread, this could be the preferred method of output as images have very real disadvantages.

=== Syntax ===

Math markup goes inside `<math> ... </math>`.

===Pros of HTML===
 # In-line HTML formulae always align properly with the rest of the HTML text.
 # The formula's background, font size and face match the rest of HTML contents and the appearance respects CSS and browser settings.
 # Pages using HTML will load faster.

=== Pros of !TeX ===
 # !TeX is semantically superior to HTML. In !TeX, "`x`" means "mathematical variable <math>x</math>", whereas in HTML "`x`" could mean anything. Information has been irrevocably lost.
 # !TeX has been specifically designed for typesetting formulae, so input is easier and more natural, and output is more aesthetically pleasing.
 # One consequence of point 1 is that !TeX can be transformed into HTML, but not vice-versa. This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of !TeX. It's true that the current situation is not ideal, but that's not a good reason to drop information/contents. It's more a reason to [[#Bug_reports|help improve the situation]].
 # Another consequence of point 1 is that !TeX can be converted to !MathML for browsers which support it, thus keeping its semantics and allowing it to be rendered vectorially.
 # When writing in !TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the server. This doesn't hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor's intentions on a different browser.
 # !TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers. It is easier to persuade them to contribute if they can write in !TeX.

=== Example Formulas ===

The following are a few examples of formulas:

{{{
<math>\sqrt{1-e^2}</math>
}}}
<math>\sqrt{1-e^2}</math>

{{{<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>}}}
<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>

{{{<math>ax^2 + bx + c = 0</math>}}}
<math>ax^2 + bx + c = 0</math>

{{{<math>\int_{-N}^{N} e^x\, dx</math>}}}
<math>\int_{-N}^{N} e^x\, dx</math>

== Functions, symbols, special characters ==

=== Accents/Diacritics ===

|| `\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}` || <math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}</math> ||
|| `\check{a} \bar{a} \ddot{a} \dot{a}` ||<math>\ \check{a} \bar{a} \ddot{a} \dot{a}</math> ||

=== Standard functions ===

|| `\sin a \cos b \tan c`|| <math>\ \sin a \cos b \tan c</math> ||
|| `\sec d \csc e \cot f`|| <math>\sec d \csc e \cot f\,\!</math> ||
|| `\arcsin h \arccos i \arctan j`|| <math>\arcsin h \arccos i \arctan j\,\!</math> ||
|| `\sinh k \cosh l \tanh m \coth n`|| <math>\ \sinh k \cosh l \tanh m \coth n</math> ||
|| `\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q`|| <math>\ \operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q</math> ||
|| `\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t`|| <math>\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\!</math> ||
|| `\lim u \limsup v \liminf w \min x \max y` || <math>\ \lim u \limsup v \liminf w \min x \max y</math> ||
|| `\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g` ||<math>\ \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g</math> ||
|| `\deg h \gcd i \Pr j \det k \hom l \arg m \dim n` || <math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!</math> ||

=== Modular arithmetic ===

|| `s_k \equiv 0 \pmod{m}` || <math>s_k \equiv 0 \pmod{m}\,\! </math> ||
|| `a\,\bmod\,b` || <math>a\,\bmod\,b\,\!</math> ||

=== Derivatives ===

|| `\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}` || <math>\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}</math> ||

=== Sets ===

|| `\forall \exists \empty \emptyset \varnothing` || <math>\forall \exists \empty \emptyset \varnothing\,\!</math> ||
|| `\in \ni \not \in \notin \subset \subseteq \supset \supseteq` || <math>\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!</math> ||
|| `\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus` || <math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math> ||
|| `\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup` || <math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math> ||

=== Operators ===

|| `+ \oplus \bigoplus \pm \mp - ` || <math>+ \oplus \bigoplus \pm \mp - \,\!</math> ||
|| `\times \otimes \bigotimes \cdot \circ \bullet \bigodot` || <math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math> ||
|| `\star * / \div \frac{1}{2}` || <math>\star * / \div \frac{1}{2}\,\!</math> ||

=== Logic ===
|| `\land (or \and) \wedge \bigwedge \bar{q} \to p` || <math>\land \wedge \bigwedge \bar{q} \to p\,\!</math> ||
|| `\lor \vee \bigvee \lnot \neg q \And` || <math>\lor \vee \bigvee \lnot \neg q \And\,\!</math> ||

=== Root ===

|| `\sqrt{2} \sqrt[n]{x}` || <math>\sqrt{2} \sqrt[n]{x}\,\!</math> ||

=== Relations ===

|| `\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}` || <math>\sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!</math> ||
|| `\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto` || <math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math> ||

=== Geometric ===

|| `\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ` || <math>\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!</math> ||

=== Arrows ===

|| `\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \not\to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow` || <math>\leftarrow \rightarrow \nleftarrow \not\to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!</math> ||
|| `\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)` || <math>\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \,\!</math> ||
|| `\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow  \nearrow \searrow \swarrow \nwarrow` || <math>\ \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow  \nearrow \searrow \swarrow \nwarrow</math> ||
|| `\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons` || <math>\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!</math> ||
|| `\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright` || <math>\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!</math> ||
|| `\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft` || <math>\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math> ||
|| `\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow ` || <math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!</math> ||

=== Special ===

|| `\And \eth \S \P \% \dagger \ddagger \ldots \cdots` || <math>\And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math> ||
|| `\smile \frown \wr \triangleleft \triangleright \infty \bot \top` || <math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math> ||
|| `\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar` || <math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math> ||
|| `\ell \mho \Finv \Re \Im \wp \complement` || <math>\ell \mho \Finv \Re \Im \wp \complement\,\!</math> ||
|| `\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp` || <math>\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math> ||

=== Unsorted (new stuff) ===

|| `\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown` || <math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math> ||
|| `\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge` || <math>\ \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge</math> ||
|| `\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes` || <math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math> ||
|| `\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant` || <math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math> ||
|| `\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq` || <math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math> ||
|| `\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft` || <math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math> ||
|| `\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot` || <math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math> ||
|| `\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq` || <math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math> ||
|| `\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork` || <math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math> ||
|| `\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq` || <math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math> ||
|| `\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid` || <math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math> ||
|| `\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr` || <math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math> ||
|| `\subsetneq` || <math>\subsetneq</math> ||
|| `\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq` || <math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math> ||
|| `\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq` || <math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math> ||
|| `\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq` || <math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math> ||
|| `\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus` || <math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math> ||
|| `\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq` || <math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math> ||
|| `\dashv \asymp \doteq \parallel` || <math>\dashv \asymp \doteq \parallel\,\!</math> ||
|| `\ulcorner \urcorner \llcorner \lrcorner` || <math>\ulcorner \urcorner \llcorner \lrcorner</math> ||

== Larger Expressions ==

=== Parenthesizing big expressions, brackets, bars ===

|| '''Feature''' || '''Syntax''' || '''How it looks rendered''' ||
|| Bad || `( \frac{1}{2} )` || <math>( \frac{1}{2} )</math> ||
|| Good || `\left ( \frac{1}{2} \right )` || <math>\left ( \frac{1}{2} \right )</math> ||

You can use various delimiters with \left and \right: 

|| '''Feature''' || '''Syntax''' || '''How it looks rendered''' ||
|| Parentheses || `\left ( \frac{a}{b} \right )` || <math>\left ( \frac{a}{b} \right )</math> ||
|| Brackets || `\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack` || <math>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</math> ||
|| Braces || `\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace` || <math>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</math> ||
|| Angle brackets || `\left \langle \frac{a}{b} \right \rangle` || <math>\left \langle \frac{a}{b} \right \rangle</math> ||
|| Bars and double bars || `\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|` || <math>\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</math> ||
|| Floor and ceiling functions: || `\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil` || <math>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</math> ||
|| Slashes and backslashes || `\left / \frac{a}{b} \right \backslash` || <math>\left / \frac{a}{b} \right \backslash</math> ||
|| Up, down and up-down arrows || `\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow` || <math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math> ||
|| Delimiters can be mixed,[[BR]]as long as \left and \right match || `\left [ 0,1 \right )` [[BR]] `\left \langle \psi \right |` || <math>\left [ 0,1 \right )</math> [[BR]] <math>\left \langle \psi \right |</math> ||
|| Use \left. and \right. if you don't[[BR]]want a delimiter to appear: || `\left . \frac{A}{B} \right \} \to X` || <math>\left . \frac{A}{B} \right \} \to X</math> ||
|| Size of the delimiters || `\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/` || <math>\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]</math> ||
|| . || `\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle` || <math>\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</math> ||
|| . || `\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|` || <math>\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|</math> ||
|| . || `\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil` || <math>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</math> ||
|| . || `\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow` || <math>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</math> ||
|| . || `\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow` || <math>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</math> ||
|| . || `\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash` || <math>\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</math> ||

== Alphabets and typefaces == 

Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.

||_\2. '''Greek alphabet''' ||
|| `\Alpha \Beta \Gamma \Delta \Epsilon \Zeta` || <math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math> ||
|| `\Eta \Theta \Iota \Kappa \Lambda \Mu` || <math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math> ||
|| `\Nu \Xi \Pi \Rho \Sigma \Tau` || <math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math> ||
|| `\Upsilon \Phi \Chi \Psi \Omega` || <math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math> ||
|| `\alpha \beta \gamma \delta \epsilon \zeta` || <math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math> ||
|| `\eta \theta \iota \kappa \lambda \mu` || <math>\eta \theta \iota \kappa \lambda \mu \,\!</math> ||
|| `\nu \xi \pi \rho \sigma \tau` || <math>\nu \xi \pi \rho \sigma \tau \,\!</math> ||
|| `\upsilon \phi \chi \psi \omega` || <math>\upsilon \phi \chi \psi \omega \,\!</math> ||
|| `\varepsilon \digamma \vartheta \varkappa` || <math>\varepsilon \digamma \vartheta \varkappa \,\!</math> ||
|| `\varpi \varrho \varsigma \varphi` || <math>\varpi \varrho \varsigma \varphi\,\!</math> ||
||_\2. '''Blackboard Bold/Scripts''' ||
|| `\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}` || <math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math> ||
|| `\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}` || <math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math> ||
|| `\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}` || <math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math> ||
|| `\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}` || <math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math> ||
||_\2. '''boldface (vectors)''' ||
|| `\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}` || <math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math> ||
|| `\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}` || <math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math> ||
|| `\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}` || <math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math> ||
|| `\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}` || <math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math> ||
|| `\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}` || <math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math> ||
|| `\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}` || <math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math> ||
|| `\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}` || <math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math> ||
|| `\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}` || <math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math> ||
|| `\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}` || <math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math> ||
|| `\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}` || <math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math> ||
||_\2. '''Boldface (greek)''' ||
|| `\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}` || <math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math> ||
|| `\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}` || <math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math> ||
|| `\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}` || <math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math> ||
|| `\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}` || <math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math> ||
|| `\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}` || <math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math> ||
|| `\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}` || <math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math> ||
|| `\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}` || <math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math> ||
|| `\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}` || <math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math> ||
|| `\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}` || <math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math> ||
|| `\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}` || <math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math> ||
||_\2. '''Italics''' ||
|| `\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}` || <math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math> ||
|| `\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}` || <math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math> ||
|| `\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}` || <math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math> ||
|| `\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}` || <math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math> ||
|| `\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}` || <math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math> ||
|| `\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}` || <math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math> ||
|| `\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}` || <math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math> ||
|| `\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}` || <math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math> ||
|| `\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}` || <math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math> ||
|| `\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}` || <math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math> ||
||_\2. '''Roman typeface''' ||
|| `\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}` || <math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math> ||
|| `\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}` || <math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math> ||
|| `\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}` || <math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math> ||
|| `\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}` || <math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math> ||
|| `\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}` || <math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math> ||
|| `\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}` || <math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math> ||
|| `\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}` || <math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math> ||
|| `\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}` || <math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math> ||
|| `\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}` || <math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math> ||
|| `\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}` || <math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math> ||
||_\2. '''Fraktur typeface''' ||
|| `\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}` || <math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math> ||
|| `\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}` || <math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math> ||
|| `\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}` || <math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math> ||
|| `\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}` || <math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math> ||
|| `\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}` || <math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math> ||
|| `\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}` || <math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math> ||
|| `\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}` || <math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math> ||
|| `\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}` || <math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math> ||
|| `\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}` || <math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math> ||
|| `\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}` || <math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math> ||
||_\2. '''Calligraphy/Script''' ||
|| `\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}` || <math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math> ||
|| `\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}` || <math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math> ||
|| `\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}` || <math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math> ||
|| `\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}` || <math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math> ||
||_\2. '''Hebrew''' ||
|| `\aleph \beth \gimel \daleth` || <math>\aleph \beth \gimel \daleth\,\!</math> ||

== Formatting issues ==

=== Spacing ===

Note that !TeX handles most spacing automatically, but you may sometimes want manual control.

|| '''Feature''' || '''Syntax''' || '''How it looks rendered''' ||
|| double quad space || a \qquad b || <math>a \qquad b</math> ||
|| quad space || a \quad b || <math>a \quad b</math> ||
|| text space || a\ b || <math>a\ b</math> ||
|| text space without PNG conversion || a \mbox{ } b || <math>a \mbox{ } b</math> ||
|| large space || a\;b || <math>a\;b</math> ||
|| medium space || a\&gt;b || (not supported) ||
|| small space || a\,b || <math>a\,b</math> ||
|| no space || ab || <math>ab\,</math> ||
|| small negative space || a\!b || <math>a\!b</math> ||

Created on , Last modified on

Debug Console

Close7 MBRequestSessionTimelineDatabase26Events15
$_GET
Array( ) Array(

)
$_POST
Array( ) Array(

)
$_COOKIE
Array( ) Array(

)
$_SERVER
Array( TEMP => /var/www/tmp, TMPDIR => /var/www/tmp, TMP => /var/www/tmp, PATH => /usr/lo... Array(
TEMP => /var/www/tmp,
TMPDIR => /var/www/tmp,
TMP => /var/www/tmp,
PATH => /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin,
USER => apache,
HOME => /var/www,
FCGI_ROLE => RESPONDER,
REDIRECT_HTTP_AUTHORIZATION => ,
REDIRECT_UNIQUE_ID => Z0KdeUQ8-uY4FdjAmzHZnAAAAEQ,
REDIRECT_SCRIPT_URL => /wiki/Help:WikiMath,
REDIRECT_SCRIPT_URI => https://shunko.aws.hubzero.org/wiki/Help:WikiMath,
REDIRECT_HTTPS => on,
REDIRECT_SSL_TLS_SNI => shunko.aws.hubzero.org,
REDIRECT_STATUS => 200,
HTTP_AUTHORIZATION => ,
UNIQUE_ID => Z0KdeUQ8-uY4FdjAmzHZnAAAAEQ,
SCRIPT_URL => /wiki/Help:WikiMath,
SCRIPT_URI => https://shunko.aws.hubzero.org/wiki/Help:WikiMath,
HTTPS => on,
SSL_TLS_SNI => shunko.aws.hubzero.org,
HTTP_ACCEPT => */*,
HTTP_USER_AGENT => Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com),
HTTP_ACCEPT_ENCODING => gzip, br, zstd, deflate,
HTTP_HOST => shunko.aws.hubzero.org,
SERVER_SIGNATURE => ,
SERVER_SOFTWARE => Apache,
SERVER_NAME => shunko.aws.hubzero.org,
SERVER_ADDR => 10.68.128.8,
SERVER_PORT => 443,
REMOTE_ADDR => 3.139.236.93,
DOCUMENT_ROOT => /var/www/shunko,
REQUEST_SCHEME => https,
CONTEXT_PREFIX => ,
CONTEXT_DOCUMENT_ROOT => /var/www/shunko,
SERVER_ADMIN => root@localhost,
SCRIPT_FILENAME => /var/www/shunko/index.php,
REMOTE_PORT => 24165,
REDIRECT_URL => /wiki/Help:WikiMath,
GATEWAY_INTERFACE => CGI/1.1,
SERVER_PROTOCOL => HTTP/1.1,
REQUEST_METHOD => GET,
QUERY_STRING => ,
REQUEST_URI => /wiki/Help:WikiMath,
SCRIPT_NAME => /index.php,
PHP_SELF => /index.php,
REQUEST_TIME_FLOAT => 1732418937.0473,
REQUEST_TIME => 1732418937
)
separator .
orderBy id
orderDir asc
1 registerIP
2 access
always
renew
tracker.sid 09d6a1e7f2d0544e3a124cae861b08ca
tracker.ssid 09d6a1e7f2d0544e3a124cae861b08ca
tracker.rsid 09d6a1e7f2d0544e3a124cae861b08ca
  • site 0.049 seconds (+0.049); 3.50 MB (+3.500) - afterInitialise
  • site 0.104 seconds (+0.055); 4.25 MB (+0.750) - afterRoute
  • site 0.157 seconds (+0.052); 6.25 MB (+2.000) - afterDispatch
  • site 0.176 seconds (+0.019); 6.50 MB (+0.250) - beforeRenderModule mod_search (Search)
  • site 0.186 seconds (+0.010); 6.50 MB (0.000) - afterRenderModule mod_search (Search)
  • site 0.187 seconds (+0.001); 6.50 MB (0.000) - beforeRenderModule mod_menu (Main Menu)
  • site 0.200 seconds (+0.013); 6.50 MB (0.000) - afterRenderModule mod_menu (Main Menu)
  • site 0.207 seconds (+0.007); 6.50 MB (0.000) - onAfterRender
  • site 0.214 seconds (+0.006); 6.75 MB (+0.250) - sessionStore
7 MB

26 Queries Logged: 0.031562805175781 seconds

  1. SELECT data
      FROM `jos_session`
      WHERE `session_id` = '4f50b296d72ee697569f47ddc30e32e0'
  2. DELETE
      FROM `jos_session`
      WHERE `session_id` = '4f50b296d72ee697569f47ddc30e32e0'
  3. SELECT data
      FROM `jos_session`
      WHERE `session_id` = '09d6a1e7f2d0544e3a124cae861b08ca'
  4. SELECT extension_id AS id,element AS "option",params,enabled
      FROM `jos_extensions`
      WHERE `type` = 'component'
      AND `element` = 'com_languages'
  5. SELECT session_id
      FROM `jos_session`
      WHERE `session_id` = '09d6a1e7f2d0544e3a124cae861b08ca'
      LIMIT 1
  6. INSERT INTO `jos_session` (`session_id`,`client_id`,`time`,`ip`)
      VALUES ('09d6a1e7f2d0544e3a124cae861b08ca','0','1732418937','3.139.236.93')
  7. SELECT extension_id AS id,element AS "option",params,enabled
      FROM `jos_extensions`
      WHERE `type` = 'component'
      AND `element` = 'com_members'
  8. SELECT b.id, b.title
      FROM `jos_usergroups` AS `a`
      LEFT JOIN jos_usergroups AS b
      ON b.lft <= a.lft
      AND b.rgt >= a.rgt
      WHERE `a`.`id` = '1'
  9. SELECT *
      FROM `jos_viewlevels`
  10. SELECT folder AS type,element AS name,protected,params
      FROM `jos_extensions`
      WHERE `enabled` >= '1'
      AND `type` = 'plugin'
      AND `state` >= '0'
      AND `access` IN ('1','1','4')
      ORDER BY `ordering` ASC
  11. SELECT m.id,m.menutype,m.title,m.alias,m.note,m.path AS route,m.link,m.type,m.level,m.language,m.browserNav,m.access,m.params,m.home,m.img,m.template_style_id,m.component_id,m.parent_id,e.element AS component
      FROM `jos_menu` AS `m`
      LEFT JOIN jos_extensions AS e
      ON e.extension_id = m.component_id
      WHERE `m`.`published` = '1'
      AND `m`.`parent_id` > '0'
      AND `m`.`client_id` = '0'
      ORDER BY `m`.`lft` ASC
  12. SELECT extension_id AS id,element AS "option",params,enabled
      FROM `jos_extensions`
      WHERE `type` = 'component'
      AND `element` = 'com_wiki'
  13. SELECT jos_template_styles.id,jos_template_styles.home,jos_template_styles.template,jos_template_styles.params,jos_extensions.protected
      FROM `jos_template_styles`
      INNER JOIN jos_extensions
      ON jos_extensions.element = jos_template_styles.template
      WHERE `jos_template_styles`.`client_id` = '0'
      AND `jos_extensions`.`enabled` = '1'
      AND `jos_extensions`.`type` = 'template'
      AND jos_extensions.`client_id` = `jos_template_styles`.`client_id`
      ORDER BY `home` DESC
  14. SELECT extension_id AS id,element AS "option",params,enabled
      FROM `jos_extensions`
      WHERE `type` = 'component'
      AND `element` = 'com_tags'
  15. SELECT COUNT(jos_wiki_pages.id) AS count
      FROM `jos_wiki_pages`
      WHERE `jos_wiki_pages`.`scope` = 'site'
  16. SELECT *
      FROM `jos_wiki_pages`
      WHERE `jos_wiki_pages`.`state` = '1'
      AND `jos_wiki_pages`.`pagename` = 'Help:WikiMath'
      AND `jos_wiki_pages`.`scope` = 'site'
      AND `jos_wiki_pages`.`scope_id` = '0'
  17. SELECT *
      FROM `jos_wiki_versions`
      WHERE `jos_wiki_versions`.`id` = '9'
  18. SELECT element
      FROM `jos_extensions`
      WHERE folder='wiki'
      AND type='plugin'
      AND enabled=1
      AND element LIKE 'parser%'
      ORDER BY enabled DESC
      LIMIT 1
  19. SELECT *
      FROM `jos_wiki_links`
      WHERE `jos_wiki_links`.`page_id` = '9'
  20. SELECT jos_tags_object.label,jos_tags.*
      FROM `jos_tags`
      INNER JOIN jos_tags_object
      ON jos_tags_object.tagid = jos_tags.id
      WHERE `jos_tags_object`.`tbl` = 'wiki'
      AND `jos_tags_object`.`objectid` = '9'
      AND `jos_tags`.`admin` NOT IN ('1')
      GROUP BY jos_tags_object.label,jos_tags.id
  21. SELECT m.id,m.title,m.module,m.position,m.content,m.showtitle,m.params,mm.menuid,e.protected
      FROM `jos_modules` AS `m`
      LEFT JOIN jos_modules_menu AS mm
      ON mm.moduleid = m.id
      LEFT JOIN jos_extensions AS e
      ON e.element = m.module
      AND e.client_id = m.client_id
      WHERE `m`.`published` = '1'
      AND `e`.`enabled` = '1'
      AND (`m`.`publish_up` IS NULL OR `m`.`publish_up` <= '2024-11-24 03:28:57' )
      AND (`m`.`publish_down` IS NULL OR `m`.`publish_down` >= '2024-11-24 03:28:57' )
      AND `m`.`access` IN ('1','1','4')
      AND `m`.`client_id` = '0'
      AND (`mm`.`menuid` = '86' OR `mm`.`menuid` <= '0' )
      ORDER BY `m`.`position` ASC,`m`.`ordering` ASC
  22. SELECT extension_id AS id,element AS "option",params,enabled
      FROM `jos_extensions`
      WHERE `type` = 'component'
      AND `element` = 'com_users'
  23. SELECT extension_id AS id,element AS "option",params,enabled
      FROM `jos_extensions`
      WHERE `type` = 'component'
      AND `element` = 'com_search'
  24. SELECT extension_id AS id,element AS "option",params,enabled
      FROM `jos_extensions`
      WHERE `type` = 'component'
      AND `element` = 'com_content'
  25. SELECT extension_id AS id,element AS "option",params,enabled
      FROM `jos_extensions`
      WHERE `type` = 'component'
      AND `element` = 'com_categories'
  26. UPDATE `jos_session`
      SET `data` = '__default|a:9:{s:15:\"session.counter\";i:1;s:19:\"session.timer.start\";i:1732418937;s:18:\"session.timer.last\";i:1732418937;s:17:\"session.timer.now\";i:1732418937;s:8:\"registry\";O:23:\"Hubzero\\Config\\Registry\":2:{s:7:\"\0*\0data\";O:8:\"stdClass\":1:{s:1:\"0\";s:7:\"session\";}s:9:\"separator\";s:1:\".\";}s:4:\"user\";C:17:\"Hubzero\\User\\User\":22:{a:1:{s:5:\"guest\";b:1;}}s:11:\"tracker.sid\";s:32:\"09d6a1e7f2d0544e3a124cae861b08ca\";s:12:\"tracker.ssid\";s:32:\"09d6a1e7f2d0544e3a124cae861b08ca\";s:12:\"tracker.rsid\";s:32:\"09d6a1e7f2d0544e3a124cae861b08ca\";}',`time` = '1732418937',`ip` = '3.139.236.93'
      WHERE `session_id` = '09d6a1e7f2d0544e3a124cae861b08ca'
  • onAfterInitialise Method plgSystemP3p::onAfterInitialise /core/plugins/system/p3p/p3p.php:21
  • onAfterInitialise Method plgSystemRemember::onAfterInitialise /core/plugins/system/remember/remember.php:20
  • onAfterInitialise Method plgSystemHubzero::onAfterInitialise /core/plugins/system/hubzero/hubzero.php:21
  • onAfterInitialise Method plgSystemXFeed::onAfterInitialise /core/plugins/system/xfeed/xfeed.php:21
  • onAfterInitialise Method plgSystemSupergroup::onAfterInitialise /core/plugins/system/supergroup/supergroup.php:113
  • onAfterRoute Method plgSystemJquery::onAfterRoute /core/plugins/system/jquery/jquery.php:21
  • onAfterRoute Method plgSystemSpamjail::onAfterRoute /core/plugins/system/spamjail/spamjail.php:21
  • onAfterRoute Method plgSystemIncomplete::onAfterRoute /core/plugins/system/incomplete/incomplete.php:21
  • onAfterRoute Method plgSystemUnconfirmed::onAfterRoute /core/plugins/system/unconfirmed/unconfirmed.php:21
  • onAfterRoute Method plgSystemUnapproved::onAfterRoute /core/plugins/system/unapproved/unapproved.php:21
  • onAfterRoute Method plgSystemPassword::onAfterRoute /core/plugins/system/password/password.php:21
  • onAfterDispatch Method plgSystemMobile::onAfterDispatch /core/plugins/system/mobile/mobile.php:22
  • onAfterDispatch Method plgSystemDebug::onAfterDispatch /core/plugins/system/debug/debug.php:60
  • onAfterDispatch Method PlgSystemHighlight::onAfterDispatch /core/plugins/system/highlight/highlight.php:25
  • onAfterRender Method plgSystemSef::onAfterRender /core/plugins/system/sef/sef.php:21